A unified rational expansion method to construct a series of explicit exact solutions to nonlinear evolution equations
نویسندگان
چکیده
A unified basic frame of rational expansion methods is presented, which leads to closed-form solutions of nonlinear evolution equations (NLEEs). The new unified algorithms are given to find exact rational formal polynomial solutions of NLEEs in terms of Jacobi elliptic functions, solutions of the Riccati equation and solutions of the generalized Riccati equation. They can be implemented in symbolic computation system Maple. As applications of the methods, we choose some physical significance NLEEs to illustrate the methods. As a consequence, we not only can successfully obtain the solutions found by most existing Jacobi elliptic function methods and tanh methods, but also find other new and more general solutions at the same time. 2005 Elsevier Inc. All rights reserved.
منابع مشابه
Modified F-Expansion Method Applied to Coupled System of Equation
A modified F-expansion method to find the exact traveling wave solutions of two-component nonlinear partial differential equations (NLPDEs) is discussed. We use this method to construct many new solutions to the nonlinear Whitham-Broer-Kaup system (1+1)-dimensional. The solutions obtained include Jacobi elliptic periodic wave solutions which exactly degenerate to the soliton solutions, triangu...
متن کاملNew explicit and Soliton Wave Solutions of Some Nonlinear Partial Differential Equations with Infinite Series Method
To start with, having employed transformation wave, some nonlinear partial differential equations have been converted into an ODE. Then, using the infinite series method for equations with similar linear part, the researchers have earned the exact soliton solutions of the selected equations. It is required to state that the infinite series method is a well-organized method for obtaining exact s...
متن کاملMulti soliton solutions, bilinear Backlund transformation and Lax pair of nonlinear evolution equation in (2+1)-dimension
As an application of Hirota bilinear method, perturbation expansion truncated at different levels is used to obtain exact soliton solutions to (2+1)-dimensional nonlinear evolution equation in much simpler way in comparison to other existing methods. We have derived bilinear form of nonlinear evolution equation and using this bilinear form, bilinear Backlund transformations and construction of ...
متن کاملExplicit exact solutions for variable coefficient Broer-Kaup equations
Based on symbolic manipulation program Maple and using Riccati equation mapping method several explicit exact solutions including kink, soliton-like, periodic and rational solutions are obtained for (2+1)-dimensional variable coefficient Broer-Kaup system in quite a straightforward manner. The known solutions of Riccati equation are used to construct new solutions for variable coefficient Broer...
متن کاملExact Solutions for Nonlinear Evolution Equations with Jacobi Elliptic Function Rational Expansion Method
In this paper we implement the unified rational expansion methods, which leads to find exact rational formal polynomial solutions of nonlinear partial differential equations (NLPDEs), to the (1+1)dimensional dispersive long wave and Clannish Random Walker’s parabolic (CRWP) equations. By using this scheme, we get some solutions of the (1+1)-dimensional dispersive long wave and CRWP equations in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 177 شماره
صفحات -
تاریخ انتشار 2006